Voici les éléments 1 - 7 sur 7
Pas de vignette d'image disponible
Publication
Métadonnées seulement

Calibrated random imputation for qualitative data

2005-3-23, Favre, Anne-Catherine, Matei, Alina, Tillé, Yves

In official statistics, when a file of microdata must be delivered to external users, it is very difficult to propose them a file where missing values has been treated by multiple imputations. In order to overcome this difficulty, we propose a method of single imputation for qualitative data that respect numerous constraints. The imputation is balanced on totals previously estimated; editing rules can be respected; the imputation is random, but the totals are not affected by an imputation variance.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

A variant of the Cox algorithm for the imputation of non-response of qualitative data

2004-3-23, Favre, Anne-Catherine, Matei, Alina, Tillé, Yves

The Coxalgorithm allows to round randomly and unbiasedly a table of real numbers without modifying the marginal totals. One possible use of this method is the random imputation of aqualitative variable in survey sampling. A modification of the Coxalgorithm is proposed in order to take into account a weighting system, which is commonly used in survey sampling. The use of this new method allows to construct a controlled imputation method that reduces the imputation variance.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Projet pour un système général d’imputation pour les variables qualitatives

2001-6, Tillé, Yves, Favre, Anne-Catherine

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Optimal allocation in balanced sampling

2005, Tillé, Yves, Favre, Anne-Catherine

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Coordination, combination and extension of optimal balanced samples

2004, Tillé, Yves, Favre, Anne-Catherine

Vignette d'image
Publication
Accès libre

Optimal allocation in balanced sampling

2005, Tillé, Yves, Favre, Anne-Catherine

The development of new sampling methods allows the selection of large balanced samples. In this paper we propose a method for computing optimal inclusion probabilities for balanced samples. Next, we show that the optimal Neyman allocation is a particular case of this method.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Les principales techniques de traitement de la non-réponse

2001-11, Favre, Anne-Catherine