Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Rollout sampling approximate policy iteration
 
  • Details
Options
Vignette d'image

Rollout sampling approximate policy iteration

Auteur(s)
Dimitrakakis, Christos 
Institut d'informatique 
Michail G. Lagoudakis
Date de parution
2008
In
Machine Learning
Vol.
72
No
3
Mots-clés
  • Machine Learning (cs.LG)
  • Artificial Intelligence (cs.AI)
  • Computational Complexity (cs.CC)
  • Machine Learning (cs....

  • Artificial Intelligen...

  • Computational Complex...

Résumé
Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions which focus on policy representation using classifiers and address policy learning as a supervised learning problem. This paper proposes variants of an improved policy iteration scheme which addresses the core sampling problem in evaluating a policy through simulation as a multi-armed bandit machine. The resulting algorithm offers comparable performance to the previous algorithm achieved, however, with significantly less computational effort. An order of magnitude improvement is demonstrated experimentally in two standard reinforcement learning domains: inverted pendulum and mountain-car.
Identifiants
https://libra.unine.ch/handle/123456789/30989
_
10.1007/s10994-008-5069-3
_
0805.2027v2
Type de publication
journal article
Dossier(s) à télécharger
 main article: 0805.2027.pdf (253.08 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00