Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Dynamics of Morse-Smale urn processes
 
  • Details
Options
Vignette d'image

Dynamics of Morse-Smale urn processes

Auteur(s)
Benaim, Michel 
Institut de mathématiques 
Hirsch, Morris W
Date de parution
1995
In
Ergodic Theory and Dynamical Systems
No
15
De la page
1005
A la page
1030
Résumé
We consider stochastic processes {x(n)}(n greater than or equal to 0) of the form x(n+1)-x(n)=gamma(n+1)(F(x(n))+U-n+1) where F : R(m) --> R(m) is C-2, {gamma(i)}(i greater than or equal to 1) is a Sequence of positive numbers decreasing to 0 and {U-i}(i greater than or equal to 1) is a sequence of uniformly bounded R(m)-valued random variables forming suitable martingale differences. We show that when the vector field F is Morse-Smale, almost surely every sample path approaches an asymptotically stable periodic orbit of the deterministic dynamical system dy/dt = F(y). In the case of certain generalized urn processes we show that for each such orbit Gamma, the probability of sample paths approaching Gamma is positive. This gives the generic behavior of three-color urn models.
Identifiants
https://libra.unine.ch/handle/123456789/6234
_
10.1017/S0143385700009767
Type de publication
journal article
Dossier(s) à télécharger
 main article: Dynamics_of_Morse_Smale_urn_processes.pdf (1.26 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00