Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Leveraging ChatGPT to Enhance Computational Thinking Learning Experiences
 
  • Details
Options
Vignette d'image

Leveraging ChatGPT to Enhance Computational Thinking Learning Experiences

Auteur(s)
Ouaazki, Abdessalam 
Institut du management de l'information 
Bergram, Kristoffer 
Institut du management de l'information 
Holzer, Adrian 
Institut du management de l'information 
Date de parution
2023-11
In
Proceedings of the 2023 TALE Conference on Teaching Assessment and Learning for Engineering
Revu par les pairs
true
Résumé
Given the pervasive reliance on technology in modern society, teaching Computational Thinking (CT) abilities is becoming increasingly relevant. These abilities, such as modeling and coding, have become crucial for a larger audience of students, not only those who wish to become software engineers or computer scientists. Recent advances in Large Language Models (LLMs), such as ChatGPT, provide powerful assistance to complete computational tasks, by simplifying code generation and debugging, and potentially enhancing interactive learning. However, it is not clear if these advances make CT tasks more accessible and inclusive for all students, or if they further contribute to a digital skills divide, favoring the top students. To address this gap, we have created and evaluated a novel learning scenario for transversal CT skills that leveraged LLMs as assistants. We conducted an exploratory field study during the spring semester of 2022, to assess the effectiveness and user experience of LLM-augmented learning. Our results indicate that the usage of ChatGPT as a learning assistant improves learning outcomes. Furthermore, contrary to our predictions, the usage of ChatGPT by students does not depend on prior CT capabilities and as such does not seem to exacerbate prior inequalities.
Nom de l'événement
IEEE TALE 2023
Lieu
Auckland, New Zealand
Identifiants
https://libra.unine.ch/handle/123456789/32255
Type de publication
conference paper
Dossier(s) à télécharger
 TALE_2023_Digital_Boosts.pdf (789.15 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00