Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. On The Differential Privacy of Thompson Sampling With Gaussian Prior
 
  • Details
Options
Vignette d'image

On The Differential Privacy of Thompson Sampling With Gaussian Prior

Auteur(s)
Aristide C. Y. Tossou
Dimitrakakis, Christos 
Institut d'informatique 
Date de parution
2018-06-24T18:37:09Z
In
Computing Research Repository (CoRR)
Vol.
1806.09192
Mots-clés
  • cs.CR
  • cs.AI
  • cs.LG
  • cs.CR

  • cs.AI

  • cs.LG

Résumé
We show that Thompson Sampling with Gaussian Prior as detailed by Algorithm 2 in (Agrawal & Goyal, 2013) is already differentially private. Theorem 1 show that it enjoys a very competitive privacy loss of only O(ln2T) after T rounds. Finally, Theorem 2 show that one can control the privacy loss to any desirable ϵ level by appropriately increasing the variance of the samples from the Gaussian posterior. And this increases the regret only by a term of O(ln2Tϵ). This compares favorably to the previous result for Thompson Sampling in the literature ((Mishra & Thakurta, 2015)) which adds a term of O(Kln3Tϵ2) to the regret in order to achieve the same privacy level. Furthermore, our result use the basic Thompson Sampling with few modifications whereas the result of (Mishra & Thakurta, 2015) required sophisticated constructions.
Identifiants
https://libra.unine.ch/handle/123456789/30984
_
1806.09192v1
Type de publication
journal article
Dossier(s) à télécharger
 main article: 1806.09192.pdf (68.56 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00