Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Efficient Bayesian estimation and combination of GARCH-type models
 
  • Details
Options
Vignette d'image

Efficient Bayesian estimation and combination of GARCH-type models

Auteur(s)
Ardia, David 
Institut d'analyse financière 
Hoogerheide, Lennart
Maison d'édition
London: Klaus Bocker
Date de parution
2010
In
Rethinking Risk Measurement and Reporting
No
II
De la page
1
A la page
19
Collection
Risk Books
Mots-clés
  • GARCH
  • Bayesian inference
  • MCMC
  • marginal likelihood
  • Bayesian model averaging
  • adaptive mixture of Student-t distributions
  • importance sampling
  • GARCH

  • Bayesian inference

  • MCMC

  • marginal likelihood

  • Bayesian model averag...

  • adaptive mixture of S...

  • importance sampling

Résumé
This chapter proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation to the posterior density of the model parameters. This density is then used in importance sampling for model estimation, model selection and model combination. The procedure is fully automatic which avoids difficult and time consuming tuning of MCMC strategies. The AdMitIS methodology is illustrated with an empirical application to S&P index log-returns where non-nested GARCH-type models are estimated and combined to predict the distribution of next-day ahead log-returns.
Identifiants
https://libra.unine.ch/handle/123456789/24522
Type de publication
book part
Dossier(s) à télécharger
 main article: MPRA_paper_22919.pdf (236.33 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00