Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Generalized urn models of evolutionary processes
 
  • Details
Options
Vignette d'image

Generalized urn models of evolutionary processes

Auteur(s)
Benaim, Michel 
Institut de mathématiques 
Schreiber, Sebastian
Tarres, Pierre
Date de parution
2004
In
Annals of Applied Probability
Vol.
3
No
14
De la page
1455
A la page
1478
Mots-clés
  • Markov chains
  • random genetic drift
  • urn models
  • replicator equations
  • STOCHASTIC APPROXIMATIONS
  • DYNAMICS
  • Markov chains

  • random genetic drift

  • urn models

  • replicator equations

  • STOCHASTIC APPROXIMAT...

  • DYNAMICS

Résumé
Generalized Polya urn models can describe the dynamics of finite populations of interacting genotypes. Three basic questions these models can address are: Under what conditions does a population exhibit growth? On the event of growth, at what rate does the population increase? What is the long-term behavior of the distribution of genotypes? To address these questions, we associate a mean limit ordinary differential equation (ODE) with the urn model. Previously, it has been shown that on the event of population growth, the limiting distribution of genotypes is a connected internally chain recurrent set for the mean limit ODE. To determine when growth and convergence occurs with positive probability, we prove two results. First, if the mean limit ODE has an "attainable" attractor at which growth is expected, then growth and convergence toward this attractor occurs with positive probability. Second, the population distribution almost surely does not converge to sets where growth is not expected and almost surely does not converge to "nondegenerate" unstable equilibria or periodic orbits of the mean limit ODE. Applications to stochastic analogs of the replicator equations and fertility-selection equations of population genetics are given.
Identifiants
https://libra.unine.ch/handle/123456789/6268
_
10.1214/105051604000000422
Type de publication
journal article
Dossier(s) à télécharger
 main article: 105051604000000422.pdf (190.94 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00