Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Differential Privacy for Multi-armed Bandits: What Is It and What Is Its Cost?
 
  • Details
Options
Vignette d'image

Differential Privacy for Multi-armed Bandits: What Is It and What Is Its Cost?

Auteur(s)
Debabrota Basu
Dimitrakakis, Christos 
Institut d'informatique 
Aristide Tossou
Date de parution
2019
In
Computing Research Repository (CoRR)
Vol.
1905.12298
Mots-clés
  • Machine Learning (cs.LG)
  • Machine Learning (stat.ML)
  • Machine Learning (cs....

  • Machine Learning (sta...

Résumé
Based on differential privacy (DP) framework, we introduce and unify privacy definitions for the multi-armed bandit algorithms. We represent the framework with a unified graphical model and use it to connect privacy definitions. We derive and contrast lower bounds on the regret of bandit algorithms satisfying these definitions. We leverage a unified proving technique to achieve all the lower bounds. We show that for all of them, the learner's regret is increased by a multiplicative factor dependent on the privacy level ϵ. We observe that the dependency is weaker when we do not require local differential privacy for the rewards.
Identifiants
https://libra.unine.ch/handle/123456789/30971
_
10.48550/arXiv.1905.12298
_
arXiv:1905.12298v2
Type de publication
journal article
Dossier(s) à télécharger
 main article: 1905.12298.pdf (306.07 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00