Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. High-dimensional near-optimal experiment design for drug discovery via Bayesian sparse sampling
 
  • Details
Options
Vignette d'image

High-dimensional near-optimal experiment design for drug discovery via Bayesian sparse sampling

Auteur(s)
Hannes Eriksson
Dimitrakakis, Christos 
Institut d'informatique 
Lars Carlsson
Date de parution
2021-04-23T22:43:16Z
In
Computing Research Repository (CoRR)
Vol.
2104-11834
Mots-clés
  • Machine Learning (cs.LG)
  • Quantitative Methods (q-bio.QM)
  • Machine Learning (stat.ML)
  • Machine Learning (cs....

  • Quantitative Methods ...

  • Machine Learning (sta...

Résumé
We study the problem of performing automated experiment design for drug screening through Bayesian inference and optimisation. In particular, we compare and contrast the behaviour of linear-Gaussian models and Gaussian processes, when used in conjunction with upper confidence bound algorithms, Thompson sampling, or bounded horizon tree search. We show that non-myopic sophisticated exploration techniques using sparse tree search have a distinct advantage over methods such as Thompson sampling or upper confidence bounds in this setting. We demonstrate the significant superiority of the approach over existing and synthetic datasets of drug toxicity.
Identifiants
https://libra.unine.ch/handle/123456789/30947
_
10.48550/arXiv.2104.11834
_
2104.11834v1
Type de publication
journal article
Dossier(s) à télécharger
 main article: 2104.11834.pdf (412.66 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00