Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. On the spectrum of a random walk on the discrete Heisenberg group and the norm of Harper's operator
 
  • Details
Options
Vignette d'image

On the spectrum of a random walk on the discrete Heisenberg group and the norm of Harper's operator

Auteur(s)
Béguin, Cédric 
Institut de statistique 
Valette, Alain 
Institut de mathématiques 
Zuk, Andrzej
Date de parution
1997
In
Journal of Geometry and Physics
Vol.
4
No
21
De la page
337
A la page
356
Mots-clés
  • Heisenberg group
  • Harper operator
  • random walk
  • C-ASTERISK-ALGEBRAS
  • MATHIEU OPERATOR
  • BLOCH ELECTRONS
  • STAR-ALGEBRAS
  • PROJECTIONS
  • Heisenberg group

  • Harper operator

  • random walk

  • C-ASTERISK-ALGEBRAS

  • MATHIEU OPERATOR

  • BLOCH ELECTRONS

  • STAR-ALGEBRAS

  • PROJECTIONS

Résumé
Harper's operator is the self-adjoint operator on l(2)(Z) defined by N(theta,phi)xi(n) = xi(n + 1) + xi(n - 1) + 2 cos(2 pi(n theta + phi))xi(n) (xi is an element of l(2)(Z), n is an element of Z, theta, phi is an element of [0, 1]). We first show that the determination of the spectrum of the transition operator on the Cayley graph of the discrete Heisenberg group in its standard presentation, is equivalent to the following upper bound on the norm of H-theta,H-phi:\\H-theta,H-phi\\ less than or equal to 2(1 + root 2 + cos(2 pi theta)). We then prove this bound by reducing it to a problem on periodic Jacobi matrices, viewing H-theta,H-phi as the image of H-theta = U-theta + U-theta* + V-theta + V-theta* in a suitable representation of the rotation algebra A(theta). We also use powers of H-theta to obtain various upper and lower bounds on \\H-theta\\ = max(phi) \\H-theta,H-phi\\. We show that ''Fourier coefficients'' of H-theta(k) in A(theta) have a combinatorial interpretation in terms of paths in the square lattice Z(2). This allows us to give some applications to asymptotics of lattice paths combinatorics.
Identifiants
https://libra.unine.ch/handle/123456789/13862
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00