Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Epistemic Risk-Sensitive Reinforcement Learning
 
  • Details
Options
Vignette d'image

Epistemic Risk-Sensitive Reinforcement Learning

Auteur(s)
Hannes Eriksson
Dimitrakakis, Christos 
Institut d'informatique 
Date de parution
2019-06-14T16:25:20Z
Nombre de page
8 pages, 2 figures
Mots-clés
  • cs.LG
  • cs.AI
  • stat.ML
  • cs.LG

  • cs.AI

  • stat.ML

Résumé
We develop a framework for interacting with uncertain environments in reinforcement learning (RL) by leveraging preferences in the form of utility functions. We claim that there is value in considering different risk measures
during learning. In this framework, the preference for risk can be tuned by variation of the parameter $\beta$ and the resulting behavior can be risk-averse, risk-neutral or risk-taking depending on the parameter choice. We
evaluate our framework for learning problems with model uncertainty. We measure and control for \emph{epistemic} risk using dynamic programming (DP) and policy gradient-based algorithms. The risk-averse behavior is then compared with the behavior of the optimal risk-neutral policy in environments with epistemic risk.
Identifiants
https://libra.unine.ch/handle/123456789/30957
_
10.48550/arXiv.1906.06273
_
1906.06273v1
Type de publication
conference paper
Dossier(s) à télécharger
 main article: ES2020-84.pdf (1.72 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00