Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Near-optimal Optimistic Reinforcement Learning using Empirical Bernstein Inequalities
 
  • Details
Options
Vignette d'image

Near-optimal Optimistic Reinforcement Learning using Empirical Bernstein Inequalities

Auteur(s)
Aristide Tossou
Debabrota Basu
Dimitrakakis, Christos 
Institut d'informatique 
Date de parution
2019
In
Computing Research Repository (CoRR)
Vol.
1905.12425
Mots-clés
  • Machine Learning (cs.LG)
  • Artificial Intelligence (cs.AI)
  • Computer Science and Game Theory (cs.GT)
  • Machine Learning
  • Machine Learning (cs....

  • Artificial Intelligen...

  • Computer Science and ...

  • Machine Learning

Résumé
We study model-based reinforcement learning in an unknown finite communicating Markov decision process. We propose a simple algorithm that leverages a variance based confidence interval. We show that the proposed algorithm, UCRL-V, achieves the optimal regret O~(DSAT−−−−−−√) up to logarithmic factors, and so our work closes a gap with the lower bound without additional assumptions on the MDP. We perform experiments in a variety of environments that validates the theoretical bounds as well as prove UCRL-V to be better than the state-of-the-art algorithms.
Identifiants
https://libra.unine.ch/handle/123456789/30972
_
10.48550/arXiv.1905.12425
_
arXiv:1905.12425v2
Type de publication
journal article
Dossier(s) à télécharger
 main article: 1905.12425.pdf (1.99 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00