Voici les éléments 1 - 10 sur 21
  • Publication
    Accès libre
    Morphological and molecular taxonomy of aquatic and terrestrial protists as a prerequisite for studies of evolution, biodiversity, biogeography, bioindication and ecosystem functioning –examples from euglyphid and arcellinid testate amoebae
    (Neuchâtel : Université de Neuchâtel, 2023) ;
    Macro-eukaryotes (i.e., organisms that do not need magnification to be seen) appear to being the dominant component of ecosystems, but they are not the only driving forces of ecological processes. Microorganisms are known to play important roles in ecological processes such as elements, and nutrients cycling and are also known to shape macro-eukaryotic communities via parasitism or symbiosis (e.g., mycorrhiza). Now we are starting to assess the diversity and the impact on ecological processes of freshwater and marine micro-organisms but little is known of the soil-dwelling microbes, especially non-fungal and non-plant unicellular microeukaryotes (known as the protists). Maybe because most do not form recognizable colonies like the bacteria and the fungi, soil protists have been overlooked even by microbiologists. Some protists such as the diatoms, radiolarians, foraminiferans and coccolithophores have proved to be potent proxies and are commonly used to evaluate current or past environmental changes, but it concerns only a fraction of the protistan diversity. Furthermore, those are mostly marine organisms. Among the plethora of soil protists and their possible uses, only testate amoebae are regularly used as proxies to monitor the evolution of peatlands. And probably, one of the major reasons that could be invoked is the largely incomplete taxonomy of soil protists. The use of protists as bioindicators implies a sound taxonomic framework. However, the diversity and the taxonomy of these organisms is still far from being understood, as most species have not been described. Protists were mainly characterized with light microscopy, but the absence of characteristic morphological traits - and the fact that the phenotypical plasticity of protists was considered as being extremely high - has led naturalists to underestimate their diversity for a long time. It is only recently with the appearance of staining protocols, electron microscopy and molecular biology that we start to assess the true diversity of these organisms. With these new tools, it appears that many described species were in fact morphospecies complexes including more than one biological species that, sometimes, could be completely unrelated. Among these tools, High Throughput Sequencing (HTS) allows to evaluate more easily the micro-eukaryotic community of an environmental sample, revealing that many clades of protists have not been characterized and are still to be discovered. There is then a need for taxonomists to describe this hidden diversity and to update old descriptions in order to build a sound taxonomy. The aim of this thesis is to cover the several steps required to improve the taxonomy of soil protists, with a focus on testate amoebae, so that they can be used in larger surveys to study their ecology, diversity and evolution.
  • Publication
    Accès libre
    Assessing the ecological value of small testate amoebae (<45 μm) in New Zealand peatlands
    (2019)
    McKeown, Michelle M
    ;
    Wilmshurst, Janet M
    ;
    Duckert, Clément
    ;
    Wood, Jamie R
    ;
    Methodological advances are essential for robust ecological research. Quantitative reconstructions of environmental conditions using testate amoebae rely on sound taxonomy. While the taxonomy of large species is relatively well resolved, this is not the case for most small taxa (typically <45 μm long). In New Zealand, peatlands contain a diversity of both cosmopolitan and characteristic large southern endemic taxa, but also have a high abundance of small taxa. The latter are often lumped into morphotypes reducing their value as ecological indicators. In this study, we demonstrate how (a) lumping small taxa versus splitting them into unique types, and (b) including or excluding them from community analysis influenced their ecological inference. We assessed testate amoeba composition in six peat bogs from New Zealand, three that were moderately-to-highly impacted, and three that were non-impacted. Environmental variables were measured at each sampling site and the surface testate amoeba community patterns and community-environment relationships compared. We found a clear division between impacted and non-impacted sites. Several distinct small taxa were more strongly related to water-table depth and conductivity, while the larger taxa were more correlated to pH. These results show that improved taxonomic resolution of small taxa can provide more informed environmental assessment.
  • Publication
    Accès libre
    Taxonomic and functional traits responses of Sphagnum peatland testate amoebae to experimentally manipulated water table
    (2018) ;
    Mulot, Matthieu, Laboratory of Soil Diversity, University of Neuchâtel, Switzerland
    ;
    Biomonitoring tools are useful to assess the impact of environmental changes on the functioning of ecosystems. Existing tools mostly require species identification, thus allowing to estimating changes in biodiversity, and possibly inferring ecosystem functioning, using functional diversity and traits based approaches.
    Testate amoebae are good indicators of surface moisture conditions in Sphagnum peatlands and are routinely used in palaeoecology. Their shells (tests), on which identification is based, can also be used to define functional traits and thus to infer changes in ecosystem functioning.
    We investigated the response of testate amoeba communities to manipulated water table depth (wet: −4 cm, intermediate: −15 cm, and dry: −25 cm) over time (seven time points, 19 months) using mesocosms by comparing two approaches: community structure and functional traits responses, using a combination of morphological (biovolume, length, aperture size and position) and physiological (mixotrophy/heterotrophy, shell material) traits.
    This is the first study investigating the effect of water table depth on testate amoeba assemblages over time using a mesocosm approach. Taxonomical and functional approaches showed similar response patterns, confirming that water level acted as a strong environmental filter. After one year Hyalosphenia papilio decreased in the dry treatment, and the community structure shifted towards a dominance of dry indicators (Nebela tincta complex, Corythion dubium, Euglypha compressa) and the selected functional traits (smaller, heterotrophic, compressed species, with a ventral aperture) corresponded to drought adaptations.
    In line with recent observational and transfer function studies exploring the use of testate amoebae functional traits, our experimental results illustrate how well-selected traits could be used to monitor the impact of present and past climatic changes on Sphagnum peatlands.
  • Publication
    Accès libre
    Palaeoecology of Sphagnum riparium (Ångström) in Northern Hemisphere peatlands: Implications for peatland conservation and palaeoecological research
    (2018)
    Gałka, Mariusz
    ;
    Galloway, Jennifer M
    ;
    Lemonis, Natalie
    ;
    Mazei, Yuri A
    ;
    ;
    Morse, Peter D
    ;
    Patterson, Timothy R
    ;
    Tsyganov, Andrey N
    ;
    Wolfe, Stephen A
    ;
    Swindles, Graeme T
    Sphagnum riparium (Ångström) is a rare constituent of modern peatland plant communities and is also very rarely found as a subfossil in peat archives. We present new data on the occurrence of Sphagnum riparium macrofossils in three Northern Hemisphere peatlands from Yellowknife (NWCanada), Abisko (N Sweden), and the Northern Ural Mountains (NWRussia). Sphagnum riparium macrofossils were present in transitional phases between rich fen and oligotrophic bog. Sphagnum riparium was a dominant species in the three sites and was found in combination with Sphagnum angustifolium, Drepanocladus sp., and vascular plants including Andromeda polifolia, Chamedaphne calyculata and Oxycoccus palustris. Testate amoebae indicate that the species occurred in wet to moderately wet conditions (water-table depth inferred from a testate amoeba transfer function model ranged between 25 and 0 cm under the peatland surface). The wet-indicator taxa Archerella flavum and Hyalosphenia papilio dominated the testate amoeba communities in peat horizons containing Sphagnum riparium. The presence of Sphagnum riparium macrofossils in peat profiles in the Northern Hemisphere can be interpreted as an indication of wet minerotrophic conditions, often corresponding to a rise in water-level and establishment of a wet habitat. Sphagnum riparium is a transient species in these peatlands and is replaced by communities dominated by more acidophilic species such as Sphagnum angustifolium, Sphagnum russowii, and Sphagnum fuscum. Our data show that although Sphagnum riparium is a transient peat-forming species, it is widespread in sub-arctic and boreal environments. The subfossil occurrence of Sphagnum riparium in the Northern Hemisphere may indicate that its range has increased during the Late Holocene. The conservation of Sphagnum riparium in peatlands depends on the existence of relatively short-lived transitional communities which potentially can be artificially created.
  • Publication
    Accès libre
    Towards a Holarctic synthesis of peatland testate amoeba ecology: Development of a new continental-scale palaeohydrological transfer function for North America and comparison to European data
    (2018)
    Amesbury, Matthew J
    ;
    Booth, Robert K
    ;
    Roland, Thomas P
    ;
    Bunbury, Joan
    ;
    Clifford, Michael J
    ;
    Charman, Dan J
    ;
    Elliot, Suzanne
    ;
    Finkelstein, Sarah
    ;
    Garneau, Michelle
    ;
    Hughes, Paul D.M
    ;
    Lamarre, Alexandre
    ;
    Loisel, Julie
    ;
    Mackay, Helen
    ;
    Magnan, Gabriel
    ;
    Markel, Erin R
    ;
    ;
    Payne, Richard J
    ;
    Pelletier, Nicolas
    ;
    Roe, Helen
    ;
    Sullivan, Maura E
    ;
    Swindles, Graeme T
    ;
    Talbot, Julie
    ;
    van Bellen, Simon
    ;
    Warner, Barry G
    Fossil testate amoeba assemblages have been used to reconstruct peatland palaeohydrology for more than two decades. While transfer function training sets are typically of local-to regional-scale in extent, combining those data to cover broad ecohydrological gradients, from the regional-to continental- and hemispheric-scales, is useful to assess if ecological optima of species vary geographically and therefore may have also varied over time. Continental-scale transfer functions can also maximise modern analogue quality without losing reconstructive skill, providing the opportunity to contextualise understanding of purely statistical outputs with greater insight into the biogeography of organisms. Here, we compiled, at moderate taxonomic resolution, a dataset of nearly 2000 modern surface peatland testate amoeba samples from 137 peatlands throughout North America. We developed transfer functions using four model types, tested them statistically and applied them to independent palaeoenvironmental data. By subdividing the dataset into eco-regions, we examined biogeographical patterns of hydrological optima and species distribution across North America. We combined our new dataset with data from Europe to create a combined transfer function. The performance of our North-American transfer function was equivalent to published models and reconstructions were comparable to those developed using regional training sets. The new model can therefore be used as an effective tool to reconstruct peatland palaeohydrology throughout the North American continent. Some eco-regions exhibited lower taxonomic diversity and some key indicator taxa had restricted ranges. However, these patterns occurred against a background of general cosmopolitanism, at the moderate taxonomic resolution used. Likely biogeographical patterns at higher taxonomic resolution therefore do not affect transfer function performance. Output from the combined North American and European model suggested that any geographical limit of scale beyond which further compilation of peatland testate amoeba data would not be valid has not yet been reached, therefore advocating the potential for a Holarctic synthesis of peatland testate amoeba data. Extending data synthesis to the tropics and the Southern Hemisphere would be more challenging due to higher regional endemism in those areas.
  • Publication
    Accès libre
    Response of Sphagnum Testate Amoebae to Drainage, Subsequent Re-wetting and Associated Changes in the Moss Carpet: Results from a Three Year Mesocosm Experiment
    Sphagnum peatlands represent a globally significant pool and sink of carbon but these functions are threatened by ongoing climate change. Testate amoebae are useful bioindicators of hydrological changes, but little experimental work has been done on the impact of water table changes on communities.
    Using a mesocosm experimental setting that was previously used to assess the impact of drought disturbance on communities and ecosystem processes with three contrasted water table positions: wet (–4 cm), intermediate (–15 cm) and dry (–25 cm), we studied the capacity of testate amoeba communities to recover when the water table was kept at –10 cm for all plots. The overall experiment lasted three years. We assessed the taxonomic and functional trait responses of testate amoeba communities. The selected traits were hypothesised to be correlated to moisture content (response traits: shell size, aperture position) or trophic role (effect traits: mixotrophy, aperture size controlling prey range).
    During the disturbance phase, the mixotrophic species Hyalosphenia papilio dominated the wet and intermediate plots, while the community shifted to a dominance of “dry indicators” (Corythion dubium, Nebela tincta, Cryptodifflugia oviformis) and corresponding traits (loss of mixotrophy, and dominance of smaller taxa with ventral or ventral-central aperture) in dry plots. During the recovery phase we observed two contrasted trends in the previously wet and intermediate plots: communities remained similar where the Sphagnum carpet remained intact but species and traits indicators of drier conditions increased in plots where it had degraded. In the former dry plots, indicators and traits of wet conditions increased by the end of the experiment.
    This is one of the first experiment simulating a disturbance and subsequent recovery in ex-situ mesocosms of Sphagnum peatland focusing on the response of testate amoebae community structure as well as functional traits to water table manipulation. The results generally confirmed that testate amoebae respond within a few months to hydrological changes and thus represent useful bioindicators for assessing current and past hydrological changes in Sphagnum peatlands.
  • Publication
    Accès libre
    Comparative ecology of vascular plant, bryophyte and testate amoeba communities in four Sphagnum peatlands along an altitudinal gradient in Switzerland
    (2015-3-4) ;
    Feldmeyer-Christe, Elizabeth
    ;
    Monitoring tools are needed to assess changes in peatland biotic communities and ecosystem functions inresponse to on-going climate and other environmental changes. Although the responses of soil organismsand plants to ecological gradients and perturbations do not always correlate, peatland monitoring ismainly based on vegetation surveys. Testate amoebae, a group of protists, are important contributorsto carbon and nitrogen cycling in organic soils and are useful bioindicators in peatland ecology andpaleoecology. There is however little comparative data on the value of testate amoebae, vascular plantsand bryophytes as bioindicators of micro-environmental gradients in peatlands.We compared the relationships of testate amoebae, bryophytes, and vascular plants with soil tempera-ture, water table depth, micro-habitats and the carbon and nitrogen content of Sphagnum mosses in fourpeatlands along a 1300 m altitudinal gradient in Switzerland. We used the full diversity of vascular plantsand bryophyte but only a selection of ten easily identifiable testate amoeba morpho-taxa (i.e. species orspecies-complexes).Indirect and direct gradient ordinations, multiple factor analysis (MFA) and transfer function modelsfor inferring water table depth showed that a selection of ten testate amoeba taxa are more powerful (%variance explained in RDA) and accurate (discrimination among habitats) indicators of local conditions(micro-habitat type, water table depth and Sphagnum C/N ratio) than the vegetation (vascular plants andbryophytes either individually or combined and considering the full diversity).Our study showed that a limited list of ten easily identifiable testate amoeba taxa have higher bioindi-cation value than the full bryophytes and vascular plants. Furthermore, testate amoebae can be analyzedon samples collected at any season (accessibility allowing and if precise sampling sites are well marked)– a clear advantage for biomonitoring and can be used to infer past changes from the peat record at thesame taxonomic resolution. This simple approach could therefore be very useful for biomonitoring ofpeatlands.
  • Publication
    Accès libre
    Environmental DNA COI barcoding for quantitative analysis of protists communities: A test using the Nebela collaris complex (Amoebozoa;Arcellinida; Hyalospheniidae)
    Environmental DNA surveys are used for screening eukaryotic diversity. However, it is unclear how quantitative this approach is and to what extent results from environmental DNA studies can be used for ecological studies requiring quantitative data. Mitochondrial cytochrome oxidase (COI) is used for species-level taxonomic studies of testate amoebae and should allow assessing the community composition from environmental samples, thus bypassing biases due to morphological identification. We tested this using a COI clone library approach and focusing on the Nebela collaris complex. Comparisons with direct microscopy counts showed that the COI clone library diversity data matched the morphologically identified taxa, and that community com-position estimates using the two approaches were similar. However, this correlation was improved when microscopy counts were corrected for biovolume. Higher correlation with biovolume-corrected community data suggests that COI clone library data matches the ratio of mitochondria and that within closely-related taxa the density of mitochondria per unit biovolume is approximately constant. Further developments of this metabarcoding approach including quantifying the mitochondrial density among closely-related taxa, experiments on other taxonomic groups and using high throughput sequencing should make if possible to quantitatively estimate community composition of different groups, which would be invaluable for microbial food webs studies.
  • Publication
    Accès libre
    Comparative ecology of vascular plant, bryophyte and testate amoeba communities in four Sphagnum peatlands along an altitudinal gradient in Switzerland
    (2015) ;
    Feldmeyer-Christe, Elizabeth
    ;
    Monitoring tools are needed to assess changes in peatland biotic communities and ecosystem functions in response to on-going climate and other environmental changes. Although the responses of soil organisms and plants to ecological gradients and perturbations do not always correlate, peatland monitoring is mainly based on vegetation surveys. Testate amoebae, a group of protists, are important contributors to carbon and nitrogen cycling in organic soils and are useful bioindicators in peatland ecology and paleoecology. There is however little comparative data on the value of testate amoebae, vascular plants and bryophytes as bioindicators of micro-environmental gradients in peatlands.
    We compared the relationships of testate amoebae, bryophytes, and vascular plants with soil temperature, water table depth, micro-habitats and the carbon and nitrogen content of Sphagnum mosses in four peatlands along a 1300 m altitudinal gradient in Switzerland. We used the full diversity of vascular plants and bryophyte but only a selection of ten easily identifiable testate amoeba morpho-taxa (i.e. species or species-complexes).
    Indirect and direct gradient ordinations, multiple factor analysis (MFA) and transfer function models for inferring water table depth showed that a selection of ten testate amoeba taxa are more powerful (% variance explained in RDA) and accurate (discrimination among habitats) indicators of local conditions (micro-habitat type, water table depth and Sphagnum C/N ratio) than the vegetation (vascular plants and bryophytes either individually or combined and considering the full diversity).
    Our study showed that a limited list of ten easily identifiable testate amoeba taxa have higher bioindication value than the full bryophytes and vascular plants. Furthermore, testate amoebae can be analyzed on samples collected at any season (accessibility allowing and if precise sampling sites are well marked) – a clear advantage for biomonitoring and can be used to infer past changes from the peat record at the same taxonomic resolution. This simple approach could therefore be very useful for biomonitoring of peatlands.
  • Publication
    Accès libre
    The Phanerozoic diversification of silica-cycling testate amoebae and its possible links to changes in terrestrial ecosystems
    (2015)
    Lahr, Daniel J.G
    ;
    Bosak, Tanja
    ;
    ;
    The terrestrial cycling of Si is thought to have a large influence on the terrestrial and marine primary production, as well as the coupled biogeochemical cycles of Si and C. Biomineralization of silica is widespread among terrestrial eukaryotes such as plants, soil diatoms, freshwater sponges, silicifying flagellates and testate amoebae. Two major groups of testate (shelled) amoebae, arcellinids and euglyphids, produce their own silica particles to construct shells. The two are unrelated phylogenetically and acquired biomineralizing capabilities independently. Hyalosphenids, a group within arcellinids, are predators of euglyphids.We demonstrate that hyalosphenids can construct shells using silica scales mineralized by the euglyphids. Parsimony analyses of the current hyalosphenid phylogeny indicate that the ability to “steal” euglyphid scales is most likely ancestral in hyalosphenids, implying that euglyphids should be older than hyalosphenids. However, exactly when euglyphids arose is uncertain. Current fossil record contains unambiguous euglyphid fossils that are as old as 50 million years, but older fossils are scarce and difficult to interpret. Poor taxon sampling of euglyphids has also prevented the development of molecular clocks. Here, we present a novel molecular clock reconstruction for arcellinids and consider the uncertainties due to various previously used calibration points. The new molecular clock puts the origin of hyalosphenids in the early Carboniferous (~370 mya). Notably, this estimate coincides with the widespread colonization of land by Si-accumulating plants, suggesting possible links between the evolution of Arcellinid testate amoebae and the expansion of terrestrial habitats rich in organic matter and bioavailable Si.