Voici les éléments 1 - 10 sur 14
  • Publication
    Accès libre
    Information retrieval with Hindi, Bengali, and Marathi languages: evaluation and analysis
    (2013) ;
    Akasereh, Mitra
    ;
    Dolamic, Ljiljana
    Our first objective in participating in FIRE evaluation campaigns is to analyze the retrieval effectiveness of various indexing and search strategies when dealing with corpora written in Hindi, Bengali and Marathi languages. As a second goal, we have developed new and more aggressive stemming strategies for both Marathi and Hindi languages during this second campaign. We have compared their retrieval effectiveness with both light stemming strategy and n-gram language-independent approach. As another language-independent indexing strategy, we have evaluated the trunc-n method in which the indexing term is formed by considering only the first n letters of each word. To evaluate these solutions we have used various IR models including models derived from Divergence from Randomness (DFR), Language Model (LM) as well as Okapi, or the classical tf idf vector-processing approach.
    For the three studied languages, our experiments tend to show that IR models derived from Divergence from Randomness (DFR) paradigm tend to produce the best overall results. For these languages, our various experiments demonstrate also that either an aggressive stemming procedure or the trunc-n indexing approach produces better retrieval effectiveness when compared to other word-based or n-gram language-independent approaches. Applying the Z-score as data fusion operator after a blind-query expansion tends also to improve the MAP of the merged run over the best single IR system.
  • Publication
    Accès libre
    Recherche d’information dans un corpus bruité (OCR)
    (2011) ; ;
    Dolamic, Ljiljana
    Cet article désire mesurer la perte de performance lors de la recherche d'information dans une collection de documents scannés. Disposant d'un corpus sans erreur et de deux versions renfermant 5 % et 20 % d'erreurs en reconnaissance, nous avons évalué six modèles de recherche d'information basés sur trois représentations des documents (sac de mots, n-grammes, ou trunc-n) et trois enracineurs. Basé sur l'inverse du rang du premier document pertinent dépisté, nous démontrons que la perte de performance se situe aux environs de - 17 % avec un taux d'erreur en reconnaissance de 5 % et s'élève à – 46 % si ce taux grimpe à 20 %. La représentation par 4-grammes semble apporter une meilleure qualité de réponse avec un corpus bruité. Concernant l'emploi ou non d'un enracineur léger ou la pseudo-rétroaction positive, aucune conclusion définitive ne peut être tirée., This paper evaluates the retrieval effectiveness degradation when facing with noisy text corpus. With the use of a test-collection having the clean text, another version with around 5% error rate in recognition and a third with 20% error rate, we have evaluated six IR models based on three text representations (bag-of-words, n-grams, trunc-n) as well as three stemmers. Using the mean reciprocal rank as performance measure, we show that the average retrieval effectiveness degradation is around -17% when dealing with an error rate of 5%. This average decrease is around -46% when facing with an error rate of 20%. The representation by 4-grams tends to offer the best retrieval when searching with noisy text. Finally, we are not able to obtain clear conclusion about the impact of different stemming strategies or the use of blind-query expansion.
  • Publication
    Accès libre
    Influence of language morphological complexity on information retrieval
    (2010)
    Dolamic, Ljiljana
    ;
    ;
    In this dissertation two aspects of information retrieval are elaborated. The frst involves the creation and evaluation of various linguistic tools for languages less studied than English, and in our case we have chosen to work with the two Slavic languages Czech and Russian, and three languages widely spoken on the Indian subcontinent, Hindi, Marathi and Bengali. To do so we compare various indexing strategies and IR models most likely to obtain the best possible performance. The second part involves an evaluation of the effectiveness of queries written in different languages when searching collections written in either English or French. To cross the language barriers we apply publicly available machine translation services, analyze the results and then explain the poor performances obtained by the translated queries.
  • Publication
    Accès libre
    Comparative Study of Indexing and Search Strategies for the Hindi, Marathi, and Bengali Languages
    (2010)
    Dolamic, Ljiljana
    ;
    The main goal of this article is to describe and evaluate various indexing and search strategies for the Hindi, Bengali, and Marathi languages. These three languages are ranked among the world’s 20 most spoken languages and they share similar syntax, morphology, and writing systems. In this article we examine these languages from an Information Retrieval (IR) perspective through describing the key elements of their inflectional and derivational morphologies, and suggest a light and more aggressive stemming approach based on them.
    In our evaluation of these stemming strategies we make use of the FIRE 2008 test collections, and then to broaden our comparisons we implement and evaluate two language independent indexing methods: the n-gram and trunc-n (truncation of the first n letters). We evaluate these solutions by applying our various IR models, including the Okapi, Divergence from Randomness (DFR) and statistical language models (LM) together with two classical vector-space approaches: tf idf and Lnu-ltc.
    Experiments performed with all three languages demonstrate that the I(ne)C2 model derived from the Divergence from Randomness paradigm tends to provide the best mean average precision (MAP). Our own tests suggest that improved retrieval effectiveness would be obtained by applying more aggressive stemmers, especially those accounting for certain derivational suffixes, compared to those involving a light stemmer or ignoring this type of word normalization procedure. Comparisons between no stemming and stemming indexing schemes shows that performance differences are almost always statistically significant. When, for example, an aggressive stemmer is applied, the relative improvements obtained are ≈28% for the Hindi language, ≈42% for Marathi, and ≈18% for Bengali, as compared to a no-stemming approach. Based on a comparison of word-based and language-independent approaches we find that the trunc-4 indexing scheme tends to result in performance levels statistically similar to those of an aggressive stemmer, yet better than the 4-gram indexing scheme. A query-by-query analysis reveals the reasons for this, and also demonstrates the advantage of applying a stemming or a trunc-4 indexing scheme.
  • Publication
    Accès libre
    Retrieval Effectiveness of Machine Translated Queries
    (2010)
    Dolamic, Ljiljana
    ;
    This article describes and evaluates various information retrieval models used to search document collections written in English through submitting queries written in various other languages, either members of the Indo-European family (English, French, German, and Spanish) or radically different language groups such as Chinese. This evaluation method involves searching a rather large number of topics (around 300) and using two commercial machine translation systems to translate across the language barriers. In this study, mean average precision is used to measure variances in retrieval effectiveness when a query language differs from the document language. Although performance differences are rather large for certain languages pairs, this does not mean that bilingual search methods are not commercially viable. Causes of the difficulties incurred when searching or during translation are analyzed and the results of concrete examples are explained.
  • Publication
    Accès libre
    Ad Hoc Retrieval with the Persian Language
    (2010)
    Dolamic, Ljiljana
    ;
    This paper describes our participation to the Persian ad hoc search during the CLEF 2009 evaluation campaign. In this task, we suggest using a light suffix-stripping algorithm for the Farsi (or Persian) language. The evaluations based on different probabilistic models demonstrated that our stemming approach performs better than a stemmer removing only the plural suffixes, or statistically better than an approach ignoring the stemming stage (around +4.5%) or a n-gram approach (around +4.7%). The use of a blind query expansion may significantly improve the retrieval effectiveness (between +7% to +11%). Combining different indexing and search strategies may further enhance the MAP (around +4.4%).
  • Publication
    Accès libre
    UniNE at CLEF 2008: TEL, and Persian IR
    (2009)
    Dolamic, Ljiljana
    ;
    Abdou, Samir
    ;
    In our participation in this evaluation campaign, our first objective was to analyze retrieval effectiveness when using The European Library (TEL) corpora composed of very short descriptions (library catalog records) and also to evaluate the retrieval effectiveness of several IR models. As a second objective we wanted to design and evaluate a stopword list and a light stemming strategy for the Persian (Farsi), a member of the Indo-European family of languages and whose morphology is more complex than of the English language.
  • Publication
    Accès libre
    Indexing and searching strategies for the Russian language
    (2009)
    Dolamic, Ljiljana
    ;
    This paper describes and evaluates various stemming and indexing strategies for the Russian language. We design and evaluate two stemming approaches, a light and a more aggressive one, and compare these stemmers to the Snowball stemmer, to no stemming, and also to a language-independent approach (n-gram). To evaluate the suggested stemming strategies we apply various probabilistic information retrieval (IR) models, including the Okapi, the Divergence from Randomness (DFR), a statistical language model (LM), as well as two vector-space approaches, namely, the classical tf idf scheme and the dtu-dtn model. We find that the vector-space dtu-dtn and the DFR models tend to result in better retrieval effectiveness than the Okapi, LM, or tf idf models, while only the latter two IR approaches result in statistically significant performance differences. Ignoring stemming generally reduces the MAP by more than 50%, and these differences are always significant. When applying an n-gram approach, performance differences are usually lower than an approach involving stemming. Finally, our light stemmer tends to perform best, although performance differences between the light, aggressive, and Snowball stemmers are not statistically significant.
  • Publication
    Accès libre
    How effective is Google's translation service in search?
    (2009) ;
    Dolamic, Ljiljana
    In multilingual countries (Canada, Hong Kong, India, among others) and large international organizations or companies (such as, WTO, European Parliament), and among Web users in general, accessing information written in other languages has become a real need (news, hotel or airline reservations, or government information, statistics). While some users are bilingual, others can read documents written in another language but cannot formulate a query to search it, or at least cannot provide reliable search terms in a form comparable to those found in the documents being searched. There are also many monolingual users who may want to retrieve documents in another language and then have them translated into their own language, either manually or automatically.
    Translation services may however be too expensive, not readily accessible or not available within a short timeframe. On the other hand, many documents contain non-textual information such as images, videos and statistics that do not need translation and can be understood regardless of the language involved. In response to these needs and in order to make the Web universally available regardless of any language barriers, in May 2007 Google launched a translation service that now provides two-way online translation services mainly between English and 41 other languages, for example, Arabic, simplified and traditional Chinese, French, German, Italian, Japanese, Korean, Portuguese, Russian, and Spanish (http://translate.google.com/). Over the last few years other free Internet translation services have been made available as for example by BabelFish (http://babel.altavista.com/) or Yahoo! (http://babelfish.yahoo.com/). These two systems are similar to that used by Google, given they are based on technology developed by Systran, one of the earliest companies to develop machine translation. Also worth mentioning here is the Promt system (also known as Reverso, http://translation2.paralink.com/), which was developed in Russia to provide mainly translation between Russian and other languages.
    The question we would like to address here is to what extent a translation service such as Google can produce adequate results in the language other than that being used to write the query. Although we will not evaluate translations per se we will test and analyze various systems in terms of their ability to retrieve items automatically based on a translated query. To be adequate, these tests must be done on a collection of documents written in one given language plus a series of topics (expressing user information needs) written in other languages, plus a series of relevance assessments (relevant documents for each topic).
  • Publication
    Accès libre
    When stopword lists make the difference
    (2009)
    Dolamic, Ljiljana
    ;
    In this brief communication, we evaluate the use of two stopword lists for the English language (one comprising 571 words and another with 9) and compare them with a search approach accounting for all word forms. We show that through implementing the original Okapi form or certain ones derived from the Divergence from Randomness (DFR) paradigm, significantly lower performance levels may result when using short or no stopword lists. For other DFR models and a revised Okapi implementation, performance differences between approaches using short or long stopword lists or no list at all are usually not statistically significant. Similar conclusions can be drawn when using other natural languages such as French, Hindi, or Persian.