Options
Gobat, Jean-Michel
Nom
Gobat, Jean-Michel
Affiliation principale
Fonction
Professeur honoraire
Email
jean-michel.gobat@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 10 sur 17
- PublicationAccès libreDiscrepancies in Growth Measurement Methods of Mosses: An Example from Two Keystone Species Grown under Increased CO2 and N Supply in a Restored Peatland(2014)
;Siegenthaler, Andy ;Buttler, Alexandre ;Grosvernier, Philippe; Bryophytes dominate northern peatlands. Obtaining reliable measurements of moss-growth and how it may be affected by global changes are therefore important. Several methods have been used to measure moss-growth but it is unclear how comparable they are in different conditions and this uncertainty undermines comparisons among studies. In a field experiment we measured the growth and production of Sphagnum fallax (Sphagnum) and Polytrichum strictum (Polytrichum) using two handling methods, using cut and uncut plants, and three growth-variables, heightgrowth, length-growth, and mass-growth. We aimed “benchmarking” a combination of six methodological options against exactly the same set of factorial experiments: atmospheric CO2 enrichment and N addition. The two handling methods produced partly different results: in half of the cases, one method revealed a significant treatment effect but the other one did not: significant negative effects on growth were only observed on uncut plants for elevated CO2 and on cut plants for N addition. Furthermore, the correspondence between measurements made with various growth-variables depended on the species and, to a lesser extent, treatments. Sphagnum and Polytrichum growth was inhibited under elevated CO2, and correlated to higher ammonium values. Sphagnum was however less affected than Polytrichum and the height difference between the two species decreased. N addition reduced the P/N ratio and probably induced P-limiting conditions. Sphagnum growth was more inhibited than Polytrichum and the height difference between the two species increased. Our data show that such a problem indeed exists between the cut and uncut handling methods. Not only do the results differ in absolute terms by as much as 82% but also do their comparisons and interpretations depend on the handling method—and thus the interpretation would be biased—in half of the cases. These results call for caution when comparing factorial studies based on different handling methods. - PublicationAccès libreFactors modulating cottongrass seedling growth stimulation to enhanced nitrogen and carbon dioxide: compensatory tradeoffs in leaf dynamics and allocation to meet potassium-limited growth(2013)
;Siegenthaler, Andy ;Buttler, Alexandre ;Grosvernier, Philippe; ;Nilsson, Mats B.Eriophorum vaginatum is a characteristic species of northern peatlands and a keystone plant for cutover bog restoration. Understanding the factors affecting E. vaginatum seedling establishment (i.e. growth dynamics and allocation) under global change has practical implications for the management of abandoned mined bogs and restoration of their C-sequestration function. We studied the responses of leaf dynamics, above- and belowground biomass production of establishing seedlings to elevated CO2 and N. We hypothesised that nutrient factors such as limitation shifts or dilutions would modulate growth stimulation. Elevated CO2 did not affect biomass, but increased the number of young leaves in spring (+400 %), and the plant vitality (i.e. number of green leaves/total number of leaves) (+3 %), both of which were negatively correlated to [K+] in surface porewater, suggesting a K-limited production of young leaves. Nutrient ratios in green leaves indicated either N and K co-limitation or K limitation. N addition enhanced the number of tillers (+38 %), green leaves (+18 %), aboveground and belowground biomass (+99, +61 %), leaf mass-to-length ratio (+28 %), and reduced the leaf turnover (-32 %). N addition enhanced N availability and decreased [K+] in spring surface porewater. Increased tiller and leaf production in July were associated with a doubling in [K+] in surface porewater suggesting that under enhanced N production is K driven. Both experiments illustrate the importance of tradeoffs in E. vaginatum growth between: (1) producing tillers and generating new leaves, (2) maintaining adult leaves and initiating new ones, and (3) investing in basal parts (corms) for storage or in root growth for greater K uptake. The K concentration in surface porewater is thus the single most important factor controlling the growth of E. vaginatum seedlings in the regeneration of selected cutover bogs. - PublicationAccès libreFactors modulating cottongrass seedling growth stimulation to enhanced nitrogen and carbon dioxide: compensatory tradeoffs in leaf dynamics and allocation to meet potassium-limited growth(2013)
;Siegenthaler, Andy ;Buttler, Alexandre ;Grosvernier, Philippe; ;Nilsson, Mats B.Eriophorum vaginatum is a characteristic species of northern peatlands and a keystone plant for cutover bog restoration. Understanding the factors affecting E. vaginatum seedling establishment (i.e. growth dynamics and allocation) under global change has practical implications for the management of abandoned mined bogs and restoration of their C-sequestration function. We studied the responses of leaf dynamics, above- and belowground biomass production of establishing seedlings to elevated CO2 and N. We hypothesised that nutrient factors such as limitation shifts or dilutions would modulate growth stimulation. Ele vated CO2 did not affect biomass, but increased the number of young leaves in spring (+400 %), and the plant vitality (i.e. number of green leaves/total number of leaves) (+3 %), both of which were negatively correlated to [K+] in surface porewater, suggesting a K-limited production of young leaves. Nutrient ratios in green leaves indicated either N and K co-limitation or K limitation. N addition enhanced the number of tillers (+38 %), green leaves (+18 %), aboveground and belowground biomass (+99, +61 %), leaf mass-to-length ratio (+28 %), and reduced the leaf turnover (−32 %). N addition enhanced N availability and decreased [K+] in spring surface porewater. Increased tiller and leaf production in July were associated with a doubling in [K+] in surface porewater suggesting that under enhanced N production is K driven. Both experiments illustrate the importance of tradeoffs in E. vaginatum growth between: (1) producing tillers and generating new leaves, (2) maintaining adult leaves and initiating new ones, and (3) investing in basal parts (corms) for storage or in root growth for greater K uptake. The K concentration in surface porewater is thus the single most important factor controlling the growth of E. vaginatum seedlings in the regeneration of selected cutover bogs. - PublicationAccès libreLitter- and ecosystem-driven decomposition under elevated CO2 and enhanced N deposition in a Sphagnum peatland(2010)
;Siegenthaler, Andy ;Buttler, Alexandre ;Bragazza, Luca ;van der Heijden, Edwin ;Grosvernier, Philippe; Peatlands represent massive global C pools and sinks. Carbon accumulation depends on the ratio between net primary production and decomposition, both of which can change under projected increases of atmospheric CO2 and N deposition. The decomposition of litter is influenced by 1) the quality of the litter, and 2) the microenvironmental conditions in which the litter decomposes. This study aims at experimentally testing the effects of these two drivers in the context of global change. We studied the in situ litter decomposition from three common peatland species (Eriophorum vaginatum, Polytrichum strictum and Sphagnum fallax) collected after one year of litter production under pre-treatment conditions (elevated CO2: 560 ppm or enhanced N: 3 g m−2 y−1 NH4NO3) and decomposed the following year under treatment conditions (same as pre-treatment). By considering the cross-effects between pre-treatments and treatments, we distinguished between the effects on mass loss of 1) the pre-treatment-induced litter quality and 2) the treatment conditions under which the litters were decomposing. The combination between CO2 pre-treatment and CO2 treatment reduced Polytrichum decomposition by −24% and this can be explained by litter quality-driven decomposition changes brought by the pre-treatment. CO2 pre-treatment reduced Eriophorum litter quality, although this was not sufficient to predict decomposition. The N addition pre-treatment reduced the decomposition of Eriophorum, due to enhanced lignin and soluble phenols concentrations in the initial litter, and reduced litter-driven losses of starch and enhanced litter-driven losses of soluble phenols. While decomposition indices based on initial litter quality provide a broad explanation of quantitative and qualitative decomposition, they can only be taken as first approximations. Indeed, the microbial ATP activity, the litter N loss and resulting litter quality, were strongly altered irrespective of the compounds' initial concentration and by means of processes that occurred independently of the initial litter-qualitative changes. The experimental design was valuable to assess litter- and ecosystem-driven decomposition pathways simultaneously or independently. The ability to separate these two drivers makes it possible to attest the presence of litter-qualitative changes even without any litter biochemical determinations, and shows the screening potential of this approach for future experiments dealing with multiple plant species. - PublicationAccès libreSpatial and seasonal patterns of cattle habitat use in a mountain wooded pasture(2006)
;Kohler, Florian; ;Reust, Stéphanie ;Wagner, Helene ;Gadallah, Fawziah; Buttler, AlexandreManagement-oriented models of cattle habitat use often treat grazing pressure as a single variable summarizing all cattle activities. This paper addresses the following questions: How does the spatial pattern of cattle effects vary between cattle activities in a highly heterogeneous landscape? Do these patterns change over the grazing season as forage availability decreases? What are the respective roles of natural and management-introduced structures? We estimated the intensity of herbage removal, dung deposition and trampling after each of three grazing periods on a grid of 25 m x25 m cells covering an entire paddock in the Swiss Jura Mountains. We found no significant positive correlations between cattle effects. Spatial patterns weakened through the season for grazing and trampling, whereas dunging patterns changed little between grazing periods. Redundancy analysis showed that different cattle effects were correlated with different environmental variables and that the importance of management-introduced variables was highest for herbage removal. Autocorrelograms and partial redundancy analyses using principal coordinates of neighbour matrices suggested that dunging patterns were more coarse-grained than the others. Systematic differences in the spatial and seasonal patterns of cattle effects may result in complex interactions with vegetation involving feedback effects through nutrient shift, with strong implications for ecosystem management. In heterogeneous environments, such as pasture-woodland landscapes, spatially explicit models of vegetation dynamics need to model cattle effects separately. - PublicationAccès libreSpatial and Seasonal Patterns of Cattle Habitat use in a Mountain Wooded Pasture(2006)
;Kohler, Florian; ;Reust, Stéphanie ;Wagner, Helene H. ;Gadallah, Fawziah; Buttler, AlexandreManagement-oriented models of cattle habitat use often treat grazing pressure as a single variable summarizing all cattle activities. This paper addresses the following questions: How does the spatial pattern of cattle effects vary between cattle activities in a highly heterogeneous landscape? Do these patterns change over the grazing season as forage availability decreases? What are the respective roles of natural and management-introduced structures? We estimated the intensity of herbage removal, dung deposition and trampling after each of three grazing periods on a grid of 25 m × 25 m cells covering an entire paddock in the Swiss Jura Mountains. We found no significant positive correlations between cattle effects. Spatial patterns weakened through the season for grazing and trampling, whereas dunging patterns changed little between grazing periods. Redundancy analysis showed that different cattle effects were correlated with different environmental variables and that the importance of management-introduced variables was highest for herbage removal. Autocorrelograms and partial redundancy analyses using principal coordinates of neighbour matrices suggested that dunging patterns were more coarse-grained than the others. Systematic differences in the spatial and seasonal patterns of cattle effects may result in complex interactions with vegetation involving feedback effects through nutrient shift, with strong implications for ecosystem management. In heterogeneous environments, such as pasture-woodland landscapes, spatially explicit models of vegetation dynamics need to model cattle effects separately. - PublicationAccès libreEffect of cattle activities on gap colonization in mountain pastures(2006)
;Kohler, Florian; ; Buttler, AlexandreCattle influences gap dynamics in pastures in two ways: (1) by creating gaps and (2) by affecting the colonization process. This effect of cattle activity on gap revegetation can be subdivided in three main factors: herbage removal, trampling and dung and urine deposition. The objective of this study was to assess how these three effects moderate the plant succession following gap creation.
In an exclosure, four controlled treatments simulating cattle activity (repeated mowing, trampling, manuring and untreated control) were applied on plots of 2 x 2 m. In the centre of each plot, one artificial gap of 60 x 60 cm was created. During three years, vegetation changes were monitored in spring and in autumn, with a square grid of 100 cells of 0.01 m2 centred on the gap.
Our experiment confirmed that fine-scale gap creation may have a high impact on relative abundances of species in the community. The gap environment acts on species as a filter and this filtering was described in terms of regenerative attributes. Colonizers were species with small seeds, unspecialized seed dispersal, persistent seed bank and high vegetation spread. However, the role of dung deposition, herbage removal or trampling by cattle did not seem to be of primary importance in the revegetation process, but could moderate vegetation response. Therefore, the different cattle effects act as secondary filters that selectively favoured or disadvantaged different species from the gap-regenerating community. These complex interactions are probably keys to understand plant coexistence in perennial grasslands. - PublicationAccès libreSoil Microbial Community Changes in Wooded Mountain Pastures due to Simulated Effects of Cattle Grazing(2005)
;Kohler, Florian ;Hamelin, Jérôme; ; Buttler, AlexandreThe effect of cattle activity on pastures can be subdivided into three categories of disturbances: herbage removal, dunging and trampling. The objective of this study was to assess separately or in combination the effect of these factors on the potential activities of soil microbial communities and to compare these effects with those of soil properties and plant composition or biomass. Controlled treatments simulating the three factors were applied in a fenced area including a light gradient (sunny and shady situation): (i) repeated mowing; (ii) trampling; (iii) fertilizing with a liquid mixture of dung and urine. In the third year of the experiment, community level physiological profiles (CLPP) (Biolog Ecoplates™) were measured for each plots. Furthermore soil chemical properties (pH, total organic carbon, total nitrogen and total phosphorus), plant species composition and plant biomass were also assessed. Despite differences in plant communities and soil properties, the metabolic potential of the microbial community in the sunny and in the shady situations were similar. Effects of treatments on microbial communities were more pronounced in the sunny than in the shady situation. In both cases, repeated mowing was the first factor retained for explaining functional variations. In contrast, fertilizing was not a significant factor. The vegetation explained a high proportion of variation of the microbial community descriptors in the sunny situation, while no significant variation appeared under shady condition. The three components of cattle activities influenced differently the soil microbial communities and this depended on the light conditions within the wooded pasture. Cattle activities may also change spatially at a fine scale and short-term and induce changes in the microbial community structure. Thus, the shifting mosaic that has been described for the vegetation of pastures may also apply for below-ground microbial communities. - PublicationAccès libreSeasonal vegetation changes in mountain pastures due to simulated effects of cattle grazing(2004)
;Kohler, Florian; ; Buttler, AlexandreCattle influence grassland dynamics in three ways: herbage removal, dung deposition and trampling. The objective of this study was to assess the effects of these factors, separately or in combination, and to compare them with cattle grazing over a one year period in a field experiment conducted in the Jura Mountains of northwestern Switzerland. A set of controlled treatments simulating the three factors was applied in a fenced area: (1) repeated mowing – three levels; (2) intensive trampling – two levels; (3) manuring with a liquid mixture of dung and urine – three levels. All treatments were applied homogeneously to the entire surface of each of the 40 plots inside the exclosure. Additionally, ten plots outside the fenced area represented reference plots with regular cattle pasturing. The multivariate response of species composition was assessed three times with the point-intercept method: in spring before the treatments, in autumn after one season of treatments and at the beginning of the following year after winter rest. Multivariate analyses of vegetation data in the first year showed an overwhelming seasonal shift and significant differences induced by treatments. Abandoned and manured plots showed the largest deviation from the cattle grazed reference. Herbage removal, simulated by repeated mowing, appeared to be the most important factor for maintaining vegetation texture. Seasonal treatment effects were only partially carried over to the next spring, showing an unexpected resilience of the plant community, probably due to life-history traits and competition release following climatic disturbance in winter. - PublicationAccès libreSpatio-temporal pattern of bog pine (Pinus uncinata var. rotundata) at the interface with the Norway spruce (Picea abies) belt on the edge of a raised bog in the Jura Mountains, Switzerland(2004)
;Freléchoux, François ;Buttler, Alexandre ;Schweingruber, Fritz H.Réactions spatio-temporelles du pin à crochets (Pinus uncinata var. rotundata) à l'interface d'une ceinture d'épicéas (Picea abies) sur la marge d'un haut-marais de la chaîne jurassienne, Suisse. Dans un site de haut-marais en voie de paludification, un peuplement de pins dépérit, ce qui est actuellement peu fréquent à l'échelle du Jura suisse. Un transect a été établi dans la tourbière de la partie externe et sèche (peuplement mixte pin-épicéa) vers la partie centrale et très humide (peuplement de pins). La nappe phréatique, la structure des arbres, la structure d'âge des arbres et la croissance radiale des pins ont été analysées avec références spatiale et temporelle. La nappe est très superficielle et le gradient hydrique est évident lors de périodes sèches. La structure des arbres (hauteur, diamètre) est nettement liée au gradient hydrique. Deux cohortes ont envahi le marais à 70 ans d'intervalle. La première, sur l'ensemble du transect, a débuté vers 1840 et pourrait être en relation avec un déboisement à la périphérie de la tourbière. Après une croissance radiale initiale rapide, les pins ont réduit brusquement leur croissance radiale (1870-1885), plus rapidement et plus fortement au centre du marais où une forte mortalité fut observée depuis 10 ans. Les pins à crochets peuvent donc survivre durant des décennies avec une croissance très réduite en milieu très humide et nous pensons que le bord des tourbières fut probablement leur niche de survie durant la paludification des marais jurassiens., In a bog site in way of paludification, a pine stand is declining, which presently is an infrequent phenomenon on the Swiss Jura scale. A transect was positioned in the bog, from the external and driest part (pine-spruce stand) towards the central and wettest part (pine stand). Water table, tree structure, tree age structure and pine radial growth were analysed with spatial and temporal references. The ground water level is very shallow and the hydrologic gradient is obvious during dry periods. Tree structure (height and diameter) is strongly linked to the hydrologic gradient. Two cohorts have invaded the bog with a 70-year-time period between them. The first one concerned the whole transect; it started around 1840 and could be related to a clear cutting on the fringe of the bog. After a quick initial radial growth, the pines reduced their radial growth abruptly (1870-1885), more quickly and strongly in the centre of the bog, where an important mortality was observed over the last 10 years. Bog pine can thus survive over decades with a very reduced growth and in very wet environment. We think that the edge of raised bogs probably constituted the bog pines' survival niche during paludification in the Jura bogs.