Voici les éléments 1 - 2 sur 2
Vignette d'image
Publication
Accès libre

Exploring substitution random functions composed of stationary multi-Gaussian processes

2024, Straubhaar, Julien, Renard, Philippe

Simulation of random felds is widely used in Earth sciences for modeling and uncertainty quantifcation. The spatial features of these felds may have a strong impact on the forecasts made using these felds. For instance, in fow and transport problems the connectivity of the permeability felds is a crucial aspect. Multi-Gaussian random felds are the most common tools to analyze and model continuous felds. Their spatial correlation structure is described by a covariance or variogram model. However, these types of spatial models are unable to represent highly or poorly connected structures even if a broad range of covariance models can be employed. With this type of model, the regions with values close to the mean are always well connected whereas the regions of low or high values are isolated. Substitution random functions (SRFs) belong to another broad class of random functions that are more fexible. SRFs are constructed by composing (Z = Yâ—¦T) two stochastic processes: the directing function T (latent feld) and the coding process Y (modifying the latent feld in a stochastic manner). In this paper, we study the properties of SRFs obtained by combining stationary multi-Gaussian random felds for both T and Y with bounded variograms. The resulting SRFs Z are stationary, but as T has a fnite variance Z is not ergodic for the mean and the covariance. This means that single realizations behave diferently from each other. We propose a simple technique to control which values (low, intermediate, or high) are connected. It consists of adding a control point on the process Y to guide every single realization. The conditioning to local values is obtained using a Gibbs sampler.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Conditioning of Multiple-Point Statistics Facies Simulations to Tomographic Images

2014-7, LochbĂĽhler, Tobias, Pirot, Guillaume, Straubhaar, Julien, Linde, Niklas

Geophysical tomography captures the spatial distribution of the underlying geophysical property at a relatively high resolution, but the tomographic images tend to be blurred representations of reality and generally fail to reproduce sharp interfaces. Such models may cause significant bias when taken as a basis for predictive flow and transport modeling and are unsuitable for uncertainty assessment. We present a methodology in which tomograms are used to condition multiple-point statistics (MPS) simulations. A large set of geologically reasonable facies realizations and their corresponding synthetically calculated cross-hole radar tomograms are used as a training image. The training image is scanned with a direct sampling algorithm for patterns in the conditioning tomogram, while accounting for the spatially varying resolution of the tomograms. In a post-processing step, only those conditional simulations that predicted the radar traveltimes within the expected data error levels are accepted. The methodology is demonstrated on a two-facies example featuring channels and an aquifer analog of alluvial sedimentary structures with five facies. For both cases, MPS simulations exhibit the sharp interfaces and the geological patterns found in the training image. Compared to unconditioned MPS simulations, the uncertainty in transport predictions is markedly decreased for simulations conditioned to tomograms. As an improvement to other approaches relying on classical smoothness-constrained geophysical tomography, the proposed method allows for: (1) reproduction of sharp interfaces, (2) incorporation of realistic geological constraints and (3) generation of multiple realizations that enables uncertainty assessment.