Options
Kessler, Félix
Nom
Kessler, Félix
Affiliation principale
Fonction
Professeur.e ordinaire
Email
felix.kessler@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 10 sur 21
- PublicationMétadonnées seulementThe chloroplast import receptor Toc90 partially restores the accumulation of Toc159 client proteins in the Arabidopsis thaliana ppi2 mutant(2011)
;Infanger, Sibylle ;Bischof, Sylvain ;Hiltbrunner, Andreas ;Agne, Birgit ;Baginsky, Sacha - PublicationMétadonnées seulement
- PublicationMétadonnées seulementModifications at the A-domain of the chloroplast import receptor Toc159(2010)
;Agne, Birgit - PublicationMétadonnées seulementThe acidic A-domain of Arabidopsis TOC159 occurs as a hyperphosphorylated protein(2010)
;Agne, Birgit; ;Montandon, Cyril ;Christ, Bastien ;Ertan, Anouk ;Jung, Friederike ;Infanger, Sibylle ;Bischof, Sylvain ;Baginsky, Sacha - PublicationMétadonnées seulementNucleotide binding and dimerization at the chloroplast pre?protein import receptor, atToc33, are not essential in vivo but do increase import efficiency(2010)
;Aronsson, Henrik ;Combe, Jonathan ;Patel, Ramesh ;Agne, Birgit ;Martin, Meryll; Jarvis, Paul - PublicationMétadonnées seulementThe TOC complex: preprotein gateway to the chloroplast(2010)
; ;Agne, Birgit - PublicationMétadonnées seulementIn vivo interaction between atToc33 and atToc159 GTP-binding domains demonstrated in a plant split-ubiquitin system(2009)
;Rahim, Gwendoline ;Bischof, Sylvain; Agne, BirgitThe GTPases atToc33 and atToc159 are pre-protein receptor components of the translocon complex at the outer chloroplast membrane in Arabidopsis. Despite their participation in the same complex in vivo, evidence for their interaction is still lacking. Here, a split-ubiquitin system is engineered for use in plants, and the in vivo interaction of the Toc GTPases in Arabidopsis and tobacco protoplasts is shown. Using the same method, the self-interaction of the peroxisomal membrane protein atPex11e is demonstrated. The finding suggests a more general suitability of the split-ubiquitin system as a plant in vivo interaction assay. - PublicationMétadonnées seulementProtein transport in organelles: The Toc complex way of preprotein import(2009)
;Agne, Birgit - PublicationMétadonnées seulementPheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis(2009)
;Schelbert, Silvia ;Aubry, Sylvain ;Burla, Bo ;Agne, Birgit; ;Krupinska, KarinHörtensteiner, Stefan - PublicationAccès librePheophytin Pheophorbide Hydrolase (Pheophytinase) Is Involved in Chlorophyll Breakdown during Leaf Senescence in Arabidopsis[W],[OA](2009)
;Schelbert, Silvia ;Aubry, Sylvain ;Burla, Bo ;Agne, Birgit; ;Krupinska, KarinHörtensteiner, StefanDuring leaf senescence, chlorophyll is removed from thylakoid membranes and converted in a multistep pathway to colorless breakdown products that are stored in vacuoles. Dephytylation, an early step of this pathway, increases water solubility of the breakdown products. It is widely accepted that chlorophyll is converted into pheophorbide via chlorophyllide. However, chlorophyllase, which converts chlorophyll to chlorophyllide, was found not to be essential for dephytylation in Arabidopsis thaliana. Here, we identify pheophytinase (PPH), a chloroplast-located and senescence-induced hydrolase widely distributed in algae and land plants. In vitro, Arabidopsis PPH specifically dephytylates the Mg-free chlorophyll pigment, pheophytin (phein), yielding pheophorbide. An Arabidopsis mutant deficient in PPH (pph-1) is unable to degrade chlorophyll during senescence and therefore exhibits a stay-green phenotype. Furthermore, pph-1 accumulates phein during senescence. Therefore, PPH is an important component of the chlorophyll breakdown machinery of senescent leaves, and we propose that the sequence of early chlorophyll catabolic reactions be revised. Removal of Mg most likely precedes dephytylation, resulting in the following order of early breakdown intermediates: chlorophyll → pheophytin → pheophorbide. Chlorophyllide, the last precursor of chlorophyll biosynthesis, is most likely not an intermediate of breakdown. Thus, chlorophyll anabolic and catabolic reactions are metabolically separated.
- «
- 1 (current)
- 2
- 3
- »